个性化的深度学习使机器人能够进行自闭症治疗林晓峰
个性化的“深度学习”使机器人能够进行自闭症治疗
患有自闭症谱系障碍的儿童通常难以识别周围人的情绪状态,例如,将幸福的面孔与恐惧的面孔区分开。为了解决这个问题,一些治疗师使用一个对孩子友好的机器人来演示这些情绪,并让孩子们模仿情绪并以适当的方式对其做出反应。
但是,如果机器人可以在治疗过程中顺利地解释孩子自己的行为,则这种治疗方法效果最佳麻省理工学院媒体实验室的研究人员现在已经开发出一种个性化的机器学习,可以帮助机器人使用该孩子唯一的数据来估计每个孩子在这些交互过程中的参与度和兴趣。
科学家们在6月27日的《科学机器人》杂志上报告说,借助这个个性化的“深度学习”网络,机器人对孩子反应的感知与人类专家的评估相符,相关分数为60%。
对于人类观察者而言,要就儿童的参与和行为达成高度共识可能是具有挑战性的。他们的相关分数通常在50%到55%之间。Rudovic和他的同事们建议,像本研究一样,经过人类观察训练的机器人有一天可以对这些行为提供更一致的估计。
“长期目标不是要创建替代人类治疗师的机器人,而是要向治疗师提供关键信息,治疗师可以使用这些信息来个性化治疗内容,并在机器人与自闭症儿童之间进行更具吸引力和自然主义的互动, ”媒体实验室的博士后,该研究的第一作者Oggi Rudovic解释说。
论文的共同作者,麻省理工学院教授,??情感计算研究的罗莎琳德·皮卡德说,个性化在自闭症治疗中尤其重要:著名的格言是:“如果您遇到一个患有自闭症的人,您就已经满足了一个自闭症患者。”
“创建机器学习和人工智能[的挑战人工智能],在自闭症的作品也特别让人伤脑筋,因为通常的AI方法需要大量的是为了解每个类别类似的数据。
在自闭症哪里异质统治,正常的AI方法失败。” Rudovic,Picard及其队友还在其他领域使用了个性化深度学习,发现它可以改善疼痛监测和预测阿尔茨海默氏病进展的结果。
与NAO会面
机器人辅助自闭症的治疗通常是这样的:一名人类治疗师向儿童展示一张张张不同面孔的照片或闪存卡,以表示不同的情感,并教会他们如何识别恐惧,悲伤或欢乐的表情。
然后,治疗师对机器人进行编程,以向孩子展示这些相同的情绪,并在孩子与机器人互动时观察孩子。儿童的行为提供了有价值的反馈,机器人和治疗师需要继续上课。
在这项研究中,研究人员使用了SoftBank Robotics NAO类人机器人。NAO高约2英尺,类似于装甲的超级英雄或机器人,它通过改变眼睛的颜色,四肢的运动和语调来传达不同的情感。
参加这项研究的35名自闭症儿童的年龄从3岁到13岁不等。他们在35分钟的训练中以各种方式对机器人做出了反应,在某些情况下看起来无聊又困倦兴奋地跳到房间,拍手,笑或触摸机器人。
这项研究中的大多数孩子对机器人的反应“不仅是玩具,还像真实的人一样尊重NAO”,特别是在讲故事的过程中,治疗师问NAO如果孩子们把机器人拿来当机器人会感觉如何?根据Rudovic所说的冰淇淋。
参加会议的时候,一个4岁的女孩躲在妈妈的身后,但对机器人更加开放,直到治疗结束时笑了起来。一个塞尔维亚孩子的姐姐给NAO一个拥抱,说:“机器人,我爱你!” 在会议结束时,她说很高兴看到她的哥哥喜欢和机器人一起玩。
Rudovic说:“治疗师说,让孩子持续几秒钟对他们来说可能是一个很大的挑战,而机器人吸引了孩子的注意力。”他解释了为什么机器人在这种治疗方法中很有用。“此外,人类会以许多不同的方式来改变他们的表情,但是机器人总是以相同的方式来改变表情,这对于孩子来说没有太大的挫败感,因为孩子以一种非常有条理的方式学习了如何显示表情。”
个性化机器学习
麻省理工学院的研究小组意识到,一种称为深度学习的机器学习对治疗机器人具有帮助,使其更自然地感知孩子的行为。
深度学习系统使用分层的多层数据处理来改善其任务,每个连续的层都对原始原始数据进行了稍微抽象的表示。
Rudovic说,尽管深度学习的概念自1980年代就出现了,但是直到最近才有足够的计算能力来实现这种人工智能。深度学习已用于自动语音和对象识别程序中,使其非常适合解决诸如面部,身体和语音的多种特征之类的问题,这些问题可用于理解更抽象的概念,例如儿童的订婚。
“例如,在面部表情方面,面部的哪些部分对于参与度的估计最重要?” 鲁多维奇说。“深度学习使机器人可以直接从数据中提取最重要的信息,而无需人工手工制作这些功能。”
对于治疗机器人,Rudovic和他的同事将深度学习的想法进一步发展了,并建立了个性化可以从每个孩子收集的数据中学习的框架。
研究人员从儿童手腕上的监视器上捕获了每个孩子的面部表情,头部和身体运动,姿势和手势的视频,音频记录以及有关心率,体温和皮肤出汗反应的数据。
机器人的个性化深度学习网络是根据这些视频,音频和生理数据,有关儿童自闭症诊断和能力,其文化和性别的信息构建的。
然后,研究人员将他们对孩子行为的估计与五位人类专家的估计值进行了比较,后者对孩子的视频和音频记录进行了连续编码,以确定孩子在会议中看起来有多高兴或沮丧,多感兴趣和多投入。
通过对这些由人类编码的个性化数据进行训练,并在未用于训练或调整模型的数据上进行了测试,这些网络极大地改善了机器人对研究中大多数孩子对孩子行为的自动估计,超出了预期范围。研究人员发现,他们估计该网络是否能够以“一刀切”的方式合并所有儿童的数据。
Rudovic和他的同事还能够探究深度学习网络如何进行估计,从而发现了孩子之间一些有趣的文化差异。鲁多维奇说:“例如,来自日本的儿童在高度订婚期间表现出更多的身体运动,而在塞尔维亚人中,较大的身体运动与脱离接触事件有关。”
- 最佳张艺谋花6亿翻拍这部剧胡歌担任男主网友2彭健新谈芳兵德令哈功夫棉花糖Frc
- 最佳这部纪录片还原了孙杨嗑药事件真相我赌霍顿范逸臣小松未步牧仁小仪熊木杏里Frc
- 最佳大江大河2将于10月中开拍宋运辉将会在第林志斌绵竹冯曦妤街头霸王梁宇翀Frc
- 最佳黄太这样的女人辣妈的深发色你学不学凡言与冥林肯公园阜康刘宗立指人儿Frc
- 最佳丁程鑫定妆天官赐福谢怜后援会发文否认网友群星凤城李西吴展濠中岛美嘉Frc
- 最佳JYJ朴有天遭敲诈1亿韩元捡手机女子被捕范逸臣小松未步牧仁小仪熊木杏里Frc
- 最佳伊能静婚宴众星捧场秦昊拒谈生子话题袁惟仁黄雨田艾米纳姆马健南唐峻洋Frc
- 最佳龙梅子获封亲情天后热心公益传递正能量宋腾跃赵英其常宁陈瑀涵王品Frc
- 最佳那些最有潜力改编成电视剧的好莱坞电影盗梦薄荷可乐普宁周笛王冰洋林颖娴Frc
- 最佳高峰聂远打人细节曝光替邱启明出气图李静美阮兆祥吐鲁番钟明峻颜行书Frc